Report: Purlin between frames 1 and 2 of course 2 on couverture droite

ReferenceZed profiles - Z200*2.0 S350GD Z275 *

Properties	Loadings	Forces	Deformations	Stresses	ULS 68\%	SLS 73\%

ULS StructuralG $+1.5 * \mathrm{~W}_{240(\text { cpe }+ \text {,cpi }+)}$

Location

At absciss $x=3.325 \mathrm{~m}$, the calculations are performed on :

- span zone on $\mathrm{z}-\mathrm{z}$ axis
- span zone on $y-y$ axis

The span of the section is 6000 mm between supports on $\mathrm{z}-\mathrm{z}$ axis .

Load direction

The load combination causes uplift.

Restraint given by the sheeting :
Surface reference name : Nersup C42S perforé sur plage [4.42.1010] 88/100e
Surface structural class :

- Wanted class from user: 2
- Optimal class from catalogue: 2
- Corrected class according to surface use: 2

Details:

- Geometrical proportions of the beam: Yes(check catalogue)
- Geometrical proportions of the surface: Yes(check catalogue)
- Lateral restraint: Yes with :
- According to EN 1993-1-3 §10.1.1(10) :
the portion of the shear stiffness provided by the sheeting for the examined member connected to the sheeting :
$\mathrm{S}=1000 \cdot \sqrt{t_{\text {core }}^{3}} \cdot(50+10 \cdot \sqrt[3]{\text { rroof }}) \cdot \frac{s}{h_{\text {tu }}}$
$\mathrm{S}=1000 \cdot \sqrt{0.842^{3}} \cdot(50+10 \cdot \sqrt[3]{7987}) \cdot \frac{1778.0}{42.0}$
$\mathrm{S}=8171232.3 \mathrm{~N}=8171.2 \mathrm{kN}$
with :
- The design thickness of the surface :
$\mathrm{t}_{\text {core }}=0.842 \mathrm{~mm}$
- The roof width : $\mathrm{b}_{\text {roof }}=7987 \mathrm{~mm}$
- The max spacing of the beams : $\mathrm{s}=1778 \mathrm{~mm}$
- The profile depth of sheeting : $\mathrm{h}_{\mathrm{w}}=42 \mathrm{~mm}$
- According to EN 1993-1-3 §10.1.1(6) :
the permissible limit of the shear stiffness of the sheet :
$\mathrm{S}_{\min }=\left(E \cdot I_{w} \cdot \frac{\pi^{2}}{L^{2}}+G \cdot I_{t}+E \cdot I_{z} \cdot \frac{\pi^{2}}{L^{2}} \cdot 0.25 \cdot h^{2}\right) \cdot \frac{70}{h^{2}}$
$\mathrm{S}_{\min }=\left(210000.0 \cdot 3984699828 \cdot \frac{\pi^{2}}{6000.0^{2}}+80769.0 \cdot 889+\right.$
$\left.210000.0 \cdot 558976 \cdot \frac{\pi^{2}}{6000.0^{2}} \cdot 0.25 \cdot 200.0^{2}\right) \cdot \frac{70}{200.0^{2}}$
$S_{\min }=1090258.1 \mathrm{~N}=1090.3 \mathrm{kN}-$ Requirement $\mathrm{S} \geq \mathrm{Smin}$ is verified
with :
- The warping constant of the beam :
$\mathrm{I}_{\mathrm{w}}=3984699828 \mathrm{~mm}^{6}$
- The span of the beam :
$\mathrm{L}=6000 \mathrm{~mm}$
- The torsion constant of the beam : $\mathrm{I}_{\mathrm{t}}=889 \mathrm{~mm}^{4}$
- The second moment of area of the cross-section about the minor axis of the cross-section of the beam $\mathrm{I}_{\mathrm{L}}=558976 \mathrm{~mm}^{4}$
- The height of the beam : $\mathrm{h}=200 \mathrm{~mm}$
- Rotational restraint: Yes ($0.01300 \mathrm{~N} / \mathrm{mm}^{2}$) with :
- Sheet fastened through : trough
- Laying direction of the sheeting : positive (the narrow flange is on the beam.)
- According to EN 1993-1-3 §10.1.5.2(5) :

Rotational stiffness of the connection between the sheeting and the purlin:
$\mathrm{c}_{\mathrm{D}, \mathrm{A}}=C_{100} \cdot k_{b a} \cdot k_{t} \cdot k_{b R} \cdot k_{A} \cdot k_{b T}$
$\mathrm{c}_{\mathrm{D}, \mathrm{A}}=2600.0 \cdot 0.354 \cdot 1.192 \cdot 0.733 \cdot 1.0 \cdot 1.0$
$\mathrm{c}_{\mathrm{D}, \mathrm{A}}=804.047 \mathrm{~N} . \mathrm{m} / \mathrm{m} / \mathrm{rad}$
with :

- Rotation coefficient for trapezoidal steel sheeting :
$\mathrm{C}_{100}=2600 \mathrm{~N} . \mathrm{m} / \mathrm{m}$
- Coefficient depending of the width of the beam flange :
$\mathrm{k}_{\mathrm{ba}}=0.354$
- Coefficient depending of the thickness :
$\mathrm{k}_{\mathrm{t}}=1.192$
- Coefficient depending of the corrugation width :
$\mathrm{k}_{\mathrm{bR}}=0.733$
- Coefficient depending of the load :
$\mathrm{k}_{\mathrm{A}}=1$
- Coefficient depending of the width of the sheeting flange through which it is fastened to the beam : $\mathrm{k}_{\mathrm{bT}}=1$
- According to EN 1993-1-3 §10.1.5.2(4)

Rotational stiffness corresponding to the flexural stiffness of the sheeting :
$\mathrm{c}_{\mathrm{D}, \mathrm{C}}=\frac{k \cdot E \cdot I_{\text {eff }}}{s}=\frac{6 \cdot 210000.0 \cdot 219.3}{1778.0}=155450.505 \mathrm{~N} . \mathrm{m} / \mathrm{m} / \mathrm{rad}$
with :

- Coefficient depending of the beam position and the load direction : $\mathrm{k}=6$
- The effective second moment of area per unit width of the sheeting :
$\mathrm{I}_{\text {eff }}=219.3 \mathrm{~mm}^{4} / \mathrm{mm}\left(21.93 \mathrm{~cm}^{4} / \mathrm{m}\right)$
- The max spacing of the beams :
$\mathrm{s}=1778 \mathrm{~mm}$
- According to EN 1993-1-3 § 10.1.5.2(1)

Total rotational spring stiffness :

$$
\mathrm{c}_{\mathrm{D}}=\frac{1}{\left(\frac{1}{c_{D, A}}+\frac{1}{c_{D, C}}\right)}=\frac{1}{\left(\frac{1}{804.047}+\frac{1}{155450.505}\right)}=799.909 \mathrm{~N} . \mathrm{m} / \mathrm{m} / \mathrm{rad}
$$

- According to EN 1993-1-3 §10.1.5.1(1)

Total lateral spring stiffness :
$\mathrm{K}=\frac{1}{\left(\frac{1}{k_{A}}+\frac{1}{k_{B}}+\frac{1}{k_{C}}\right)}=\frac{1}{\left(\frac{1}{0.02}+\frac{1}{0.034}+\frac{1}{3.886}\right)}=0.013 \mathrm{~N} / \mathrm{mm}^{2}$
with :

- Lateral spring stiffness corresponding to the rotational stiffness of the joint between the sheeting and the beam :
$\mathrm{K}_{\mathrm{A}}=\frac{c_{D . A}}{h^{2}}=\frac{804.047}{200.0^{2}}=0.02 \mathrm{~N} / \mathrm{mm}^{2}$
- Lateral spring stiffness due to distortion of the cross-section of the beam :
$\mathrm{K}_{\mathrm{B}}=\frac{E \cdot t_{\text {core }}^{3}}{4 \cdot\left(1-\nu^{2}\right) \cdot h^{2} \cdot\left(h_{d}+b_{\text {mod }}\right)}$
$\mathrm{K}_{\mathrm{B}}=\frac{210000.0 \cdot 1.962^{3}}{4 \cdot\left(1-0.3^{2}\right) \cdot 200.0^{2} \cdot(200.0+119.0)}$
$\mathrm{K}_{\mathrm{B}}=0.034 \mathrm{~N} / \mathrm{mm}^{2}$
with :
- The developed height of the beam web:
$\mathrm{h}_{\mathrm{d}}=200 \mathrm{~mm}$
- The dimension :

$$
\mathrm{b}_{\text {mod }}=2 \mathrm{a}+\mathrm{b}=2 * 29.75+59.5=119 \mathrm{~mm}
$$

- Lateral spring stiffness due to the flexural stiffness of the sheeting :
$\mathrm{K}_{\mathrm{C}}=\frac{c_{D . C}}{h^{2}}=\frac{155450.505}{200.0^{2}}=3.886 \mathrm{~N} / \mathrm{mm}^{2}$

Main recommandations

- In order to avoid web crippling under support reaction, the purlin is assumed to be suspended on the cleats.
- During assembly phase, the burdens will be stored above the rafters.

Analysis of the global cross section

- Axial force : $\mathrm{N}_{\mathrm{Ed}}=0 \mathrm{kN}$
- Shear force : $\mathrm{V}_{\mathrm{z}, \mathrm{Ed}}=-0.089 \mathrm{kN}$
- Shear resistance (EN 1993-1-3 §6.1.5):
$\mathrm{V}_{\mathrm{b}, \mathrm{Rd}}=\frac{\frac{h_{w}}{\sin \Phi} \cdot t \cdot f_{b v}}{\gamma_{M 0}}=\frac{\frac{198.0}{\sin -90} \cdot 1.962 \cdot 121.3}{1.0}=47130.4 \mathrm{~N}=47.13 \mathrm{kN}$
Checking: $\mathrm{V}_{\mathrm{z}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{b}, \mathrm{Rd}}=-0.089 / 47.13=0.2 \% \leq 100 \% \mathrm{IC}$
with :
- The web height between the midlines of the flanges : $\mathrm{h}_{\mathrm{w}}=198 \mathrm{~mm}$ (EN 1993-1-3 fig. 5.1(c))
- The slope of the web relative to the flanges : $\Phi=90^{\circ}$ (EN 1993-1-3 fig. 6.5)
- The shear strength considering buckling, for $0.83<\overline{\lambda_{w}}=1.385<1.40$:
$\mathrm{f}_{\mathrm{bv}}=0.48 \cdot \frac{f_{y b}}{\lambda_{w}}=0.48 \cdot \frac{350.0}{1.385}=121.3 \mathrm{MPa}$ (EN 1993-1-3 tab. 6.1)
with :
- The relative web slenderness :
$\pi_{\mathrm{w}}=0.346 \cdot \frac{s_{w}}{t} \sqrt{\frac{f_{y b}}{E}}=0.346 \cdot \frac{192.3}{1.962} \sqrt{\frac{350.0}{210000.0}}=1.385$ (EN 1993-1-3 eq. 6.10a - for webs without longitudinal stiffeners)
- The slant height of the web, between the median points of the corners : $\mathrm{s}_{\mathrm{w}}=192.3 \mathrm{~mm}$

Analysis of the flanges

- Bending moments :
- Around of y-y major axis : $\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}=-4.021 \mathrm{kN} . \mathrm{m}$
- Around of $\mathrm{z}-\mathrm{z}$ minor axis : $\mathrm{M}_{\mathrm{z}, \mathrm{Ed}}=0 \mathrm{kN} . \mathrm{m}$
- The equivalent lateral load acting on the flange, due to torsion and lateral bending :
$\mathrm{q}_{\mathrm{h}, \mathrm{Ed}}=k_{h} \cdot q E d=0.03 \cdot 0.864=0.026 \mathrm{kN} / \mathrm{m}$ (EN 1993-1-3 eq. 10.4)
with :
- The linear load on z-z axis : $\mathrm{q}_{\mathrm{Ed}}=0.864 \mathrm{kN} / \mathrm{m}$
- The coefficient in suction : $\mathrm{k}_{\mathrm{h}}=k_{h 0}-\frac{\frac{b-t_{N}}{2}-e}{h-t_{N}}=0.166-\frac{\frac{59.5-2.0}{2}-1.9}{200.0-2.0}=0.03$ (EN 1993-1-3 fig. 10.3)
- The shear center position on y - y axis : $\mathrm{e}=1.9 \mathrm{~mm}$
- The factor for lateral load on flange $: \mathrm{k}_{\mathrm{h}, 0}=\frac{h \cdot t_{N} \cdot\left(b^{2}+2 \cdot c \cdot b-2 \cdot c^{2} \cdot \frac{b}{h}\right)}{4 \cdot I_{y}}=\frac{200.0 \cdot 2.0 \cdot\left(65.0^{2}+2 \cdot 22.0 \cdot 65.0-2 \cdot 22.0^{2} \cdot \frac{65.0}{200.0}\right)}{4 \cdot 4086086}=0.166$ (EN 1993-1-3 fig. 10.3)

- Top flange

- In-plane bending (EN 1993-1-3 §6.1.4) :
$\mathrm{M}_{\mathrm{y}, \mathrm{Rd}}=\frac{W_{y, e f f} \cdot f_{u b}}{\gamma_{M 0}}=\frac{42326.0 \cdot 350.0}{1.0}=14814139 \mathrm{~N} . \mathrm{mm}=14.814 \mathrm{kN} . \mathrm{m}$
Checking : $\mathrm{M}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{y}, \mathrm{Rd}}=-4.021 / 14.814=27.1 \% \leq 100 \% \mathrm{~B}$
with :
- The effective section modulus about y - y axis : $\mathrm{W}_{\mathrm{y} \text {,eff }}=42326 \mathrm{~mm}^{3}$
- Lateral bending due to load in the slope direction (EN 1993-1-3 §6.1.4) :
$\mathrm{M}_{\mathrm{z}, \mathrm{Ed}}=0 \mathrm{kN} . \mathrm{m}$; (The bending about $\mathrm{z}-\mathrm{z}$ axis is taken over by the surface)
Checking: $\mathrm{M}_{\mathrm{z}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{fz}, \mathrm{Rd}}=0.0 \% \leq 100 \% \mathrm{~B}$
- Combined shear force, axial force and bending moment (EN 1993-1-3 eq. 6.27) :

No reduction due to shear force need not be done provided that $\mathrm{V}_{\mathrm{z}, \mathrm{Ed}} \leq 0,5 \mathrm{~V}_{\mathrm{w}, \mathrm{Rd}}$.
Here: $0.2 \% \leq 50 \%$ ib

- Buckling resistance of flange (EN 1993-1-3 eq. 10.7) :

The flange is in tension, so it is not necessary to check its lateral buckling resistance.
Ratio max: 27.2\%

- Bottom flange
- In-plane bending (EN 1993-1-3 §6.1.4) :
$\mathrm{M}_{\mathrm{y}, \mathrm{Rd}}=\frac{W_{y, \text { eff }} \cdot f_{v b}}{\gamma_{M 0}}=\frac{36274.0 \cdot 350.0}{1.0}=12695868 \mathrm{~N} . \mathrm{mm}=12.696 \mathrm{kN} . \mathrm{m}$
Checking : $\mathrm{M}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{y}, \mathrm{Rd}}=-4.021 / 12.696=31.7 \% \leq 100 \% \mathrm{~B}$
with :
- The effective section modulus about y - y axis : $\mathrm{W}_{\mathrm{y}, \mathrm{eff}}=36274 \mathrm{~mm}^{3}$
- Lateral bending due to the equivalent lateral load acting on the flange (EN 1993-1-3 §6.1.4) :
$\mathrm{M}_{\mathrm{fz}, \mathrm{Rd}}=\frac{W_{f z} \cdot f_{y b}}{\gamma_{M 0}}=\frac{3990 \cdot 350.0}{1.0}=1396500 \mathrm{~N} . \mathrm{mm}=1.396 \mathrm{kN} . \mathrm{m}$
Checking : $\mathrm{M}_{\mathrm{fz}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{fz}, \mathrm{Rd}}=-0.034 / 1.396=2.4 \% \leq 100 \% \mathrm{~B}$
with :
- Lateral bending moment for the flange:

$\mathrm{M}_{\mathrm{fz}, \mathrm{Ed}}=-0.034 \mathrm{kN} . \mathrm{m}$ (Analytic resolution)
- The effective section modulus about $\mathrm{z}-\mathrm{z}$ axis : $\mathrm{W}_{\mathrm{fz}}=3990 \mathrm{~mm}^{3}$
- Biaxial bending (EN 1993-1-3 eq. 6.7) :

Checking : $\mathrm{M}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{y}, \mathrm{Rd}}+\mathrm{M}_{\mathrm{fz}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{fz}, \mathrm{Rd}}=31.7 \%+2.4 \%=34.1 \% \leq 100 \% \mathrm{lb}$

- Combined shear force, axial force and bending moment (EN 1993-1-3 eq. 6.27) : No reduction due to shear force need not be done provided that $\mathrm{V}_{\mathrm{z}, \mathrm{Ed}} \leq 0,5 \mathrm{~V}_{\mathrm{w}, \mathrm{Rd}}$ Here: $0.2 \% \leq 50 \%$ ib
- Buckling resistance of flange (EN 1993-1-3 eq. 10.7)

$$
\begin{aligned}
& \left(\frac{1}{\chi L T} \cdot\left(\frac{M_{y, E d}}{M_{y, R d}}+\frac{N_{E d}}{N_{c, R d}}\right)+\frac{M_{f z, E d}+\Delta M_{z, E d}}{M_{f z, R d}}\right) \cdot \frac{\gamma_{M 1}}{\gamma_{M 0}}=\left(\frac{1}{0.483} \cdot(31.7 \%+0.0 \%)+2.4 \%\right) \cdot \frac{1.0}{1.0}=68.0 \% \leq 100 \% \mathrm{~B} \\
& \text { with : } \\
& \text { - The reduction factor for lateral-torsional buckling : (EN 1993-1-1 §6.3.2.3) } \\
& \chi_{\mathrm{LT}}=\min \frac{1}{\Phi_{L T}+{\sqrt{\Phi_{L T}^{2}}-\beta \cdot{\overline{\lambda_{L T}}}^{2}}^{2}, \frac{1}{\lambda_{L T}^{2}}, 1=\min \frac{1}{1.379+\sqrt{1.379^{2}-0.75 \cdot 1.379^{2}}}, \frac{1}{1.379^{2}}, 1=0.483} \\
& \text { with : } \\
& \text { - } \Phi_{\mathrm{LT}}=0.5 \cdot\left[1+\alpha_{L T} \cdot\left(\overline{\lambda_{L T}}-\overline{\lambda_{L T, 0}}\right)+\beta \cdot{\overline{\lambda_{L T}}}^{2}\right]=0.5 \cdot\left[1+0.34 \cdot(1.379-0.4)+0.75 \cdot 1.379^{2}\right]=1.379 \\
& \text { - } \alpha_{\text {LT }}=0.34 \text { (using buckling curve } \mathrm{b} \text { - EN 1993-1-3 §10.1.4.2(1)) } \\
& \text { - } \bar{\pi}_{\overline{\mathrm{LT}, 0}}=0.4 \text { (EN 1993-1-3 §10.1.4.2(1)) } \\
& \text { - } \beta=0.75 \text { (EN 1993-1-3 §10.1.4.2(1)) } \\
& \text { - } \bar{\Lambda}_{\overline{\mathrm{LT}}}=\bar{\lambda}_{\overline{\mathrm{fz}}}=\frac{\frac{l_{f z}}{i_{f z}}}{\lambda_{1}}=\frac{2472.1}{76.95}=1.379 \text { (EN 1993-1-3 eq. 10.8) } \\
& \text { with : } \\
& \text { - } \lambda_{1}=\pi \cdot \sqrt{\frac{E}{f_{y b}}}=\pi \cdot \sqrt{\frac{210000.0}{350.0}}=76.95
\end{aligned}
$$

- The radius of gyration of the gross cross-section of the flange plus the contributing part of the web for bending about the $\mathrm{z}-\mathrm{z}$ axis : $\mathrm{i}_{\mathrm{fz}}=23.3 \mathrm{~mm}$
- The buckling length for the flange :
$\mathrm{l}_{\mathrm{fz}}=\eta_{1} \cdot L_{a} \cdot\left(1+\eta_{2} \cdot R^{\eta_{3}}\right)^{\eta_{4}}=0.902 \cdot 3000.0 \cdot\left(1+8.55 \cdot 0.415^{2.18}\right)^{-0.111}=2472.1 \mathrm{~mm}$ (EN 1993-1-3 eq. 10.9) with :
- The distance between anti-sag bars : $\mathrm{L}_{\mathrm{a}}=3000 \mathrm{~mm}$
- The coefficient of the spring support : $\mathrm{R}=\frac{K \cdot L_{a}^{4}}{\pi^{4} \cdot E \cdot I_{f z}}=\frac{0.013 \cdot 3000.0^{4}}{\pi^{4} \cdot 210000.0 \cdot 120300}=0.415$
- As given in EN 1993-1-3 Tables 10.2, for simple span of a non uniformly loaded beam system : $\eta_{1}=0.902 ; \eta_{2}=8.55 ; \eta_{3}=2.18 ; \eta_{4}=-0.111$
- Lateral bending of the flange :
$\frac{M_{f z, E d}+\Delta M_{z, E d}}{M_{f z, R d}}=\frac{-0.034+0.0}{1.396}=2.4 \%$
Ratio max: 68\%
© Copyright 2015-2018 - Lisa.blue version bêta 18.5.11 - for evaluation only - contact@lisa.blue

